TY - JOUR T1 - The Influence of Legacy P on Lake Water Quality in a Midwestern Agricultural Watershed JF - Ecosystems Y1 - 2017 A1 - Motew, Melissa A1 - Chen, Xi A1 - Booth, Eric G. A1 - Carpenter, Stephen R. A1 - Pinkas, Pavel A1 - Zipper, Samuel C. A1 - Loheide, Steven P. A1 - Donner, Simon D. A1 - Tsuruta, Kai A1 - Vadas, Peter A. A1 - Kucharik, Christopher J. AB - Decades of fertilizer and manure applications have led to a buildup of phosphorus (P) in agricultural soils and sediments, commonly referred to as legacy P. Legacy P can provide a long-term source of P to surface waters where it causes eutrophication. Using a suite of numerical models, we investigated the influence of legacy P on water quality in the Yahara Watershed of southern Wisconsin, USA. The suite included Agro-IBIS, a terrestrial ecosystem model; THMB, a hydrologic and nutrient routing model; and the Yahara Water Quality Model which estimates water quality indicators in the Yahara chain of lakes. Using five alternative scenarios of antecedent P storage (legacy P) in soils and channels under historical climate conditions, we simulated outcomes of P yield from the landscape, lake P loading, and three lake water quality indicators. Legacy P had a significant effect on lake loads and water quality. Across the five scenarios for Lake Mendota, the largest and most upstream lake, average P yield (kg ha−1) varied by −41 to +22%, P load (kg y−1) by −35 to +14%, summer total P (TP) concentration (mg l−1) by −25 to +12%, Secchi depth (m) by −7 to +3%, and the probability of hypereutrophy by −67 to +34%, relative to baseline conditions. The minimum storage scenario showed that a 35% reduction in present-day loads to Lake Mendota corresponded with a 25% reduction in summer TP and smaller reductions in the downstream lakes. Water quality was more vulnerable to heavy rainfall events at higher amounts of P storage and less so at lower amounts. Increases in heavy precipitation are expected with climate change; therefore, water quality could be protected by decreasing P reserves. SN - 1435-0629 UR - http://dx.doi.org/10.1007/s10021-017-0125-0 JO - Ecosystems ER - TY - JOUR T1 - Creating a safe operating space for iconic ecosystems JF - Science Y1 - 2015 A1 - Scheffer, M. A1 - Barrett, S. A1 - Carpenter, S. R. A1 - Folke, C. A1 - Green, A. J. A1 - Holmgren, M. A1 - Hughes, T. P. A1 - Kosten, S. A1 - van de Leemput, I. A. A1 - Nepstad, D. C. A1 - van Nes, E. H. A1 - Peeters, E. T. H. M. A1 - Walker, B. VL - 347 UR - http://www.sciencemag.org/content/347/6228/1317.short IS - 6228 JO - Science ER - TY - JOUR T1 - What is the influence on water quality in temperate eutrophic lakes of a reduction of planktivorous and benthivorous fish? A systematic review protocol JF - Environmental Evidence Y1 - 2013 A1 - Bernes, C. A1 - Carpenter, S. R. A1 - Gardmark, A. A1 - Larsson, P. A1 - Persson, L. A1 - Skov, C. A1 - Van Donk, E. AB - BACKGROUND:In lakes that have become eutrophic due to sewage discharges or nutrient runoff from land, problems such as algal blooms and oxygen deficiency often persist even when nutrient supplies have been reduced. One reason is that phosphorus stored in the sediments can exchange with the water. There are indications that the high abundance of phytoplankton, turbid water and lack of submerged vegetation seen in many eutrophic lakes may represent a semi-stable state. For that reason, a shift back to more natural clear-water conditions could be difficult to achieve.In some cases, though, temporary mitigation of eutrophication-related problems has been accomplished through biomanipulation: stocks of zooplanktivorous fish have been reduced by intensive fishing, leading to increased populations of phytoplankton-feeding zooplankton. Moreover, reduction of benthivorous fish may result in lower phosphorus fluxes from the sediments. An alternative to reducing the dominance of planktivores and benthivores by fishing is to stock lakes with piscivorous fish. These two approaches have often been used in combination.The implementation of the EU Water Framework Directive has recently led to more stringent demands for measures against eutrophication, and a systematic review could clarify whether biomanipulation is efficient as a measure of that kind.METHODS:The review will examine primary field studies of how large-scale biomanipulation has affected water quality and community structure in eutrophic lakes or reservoirs in temperate regions. Such studies can be based on comparison between conditions before and after manipulation, on comparison between treated and non-treated water bodies, or both. Relevant outcomes include Secchi depth, concentrations of oxygen, nutrients, suspended solids and chlorophyll, abundance and composition of phytoplankton, zooplankton and fish, and coverage of submerged macrophytes. VL - 2 UR - http://www.environmentalevidencejournal.org/content/2/1/9 IS - 1 ER - TY - JOUR T1 - General Resilience to Cope with Extreme Events JF - Sustainability Y1 - 2012 A1 - Carpenter, S. R. A1 - Arrow, K. J. A1 - Barrett, S. A1 - Biggs, R. A1 - Brock, W. A. A1 - Crepin, A. S. A1 - Engstrom, G. A1 - Folke, C. A1 - Hughes, T. P. A1 - Kautsky, N. A1 - Li, C. Z. A1 - McCarney, G. A1 - Meng, K. A1 - Maler, K. G. A1 - Polasky, S. A1 - Scheffer, M. A1 - Shogren, J. A1 - Sterner, T. A1 - Vincent, J. R. A1 - Walker, B. A1 - Xepapadeas, A. A1 - de Zeeuw, A. AB - Resilience to specified kinds of disasters is an active area of research and practice. However, rare or unprecedented disturbances that are unusually intense or extensive require a more broad-spectrum type of resilience. General resilience is the capacity of social-ecological systems to adapt or transform in response to unfamiliar, unexpected and extreme shocks. Conditions that enable general resilience include diversity, modularity, openness, reserves, feedbacks, nestedness, monitoring, leadership, and trust. Processes for building general resilience are an emerging and crucially important area of research. VL - 4 SN - 2071-1050 UR - http://dx.doi.org/10.3390/su4123248 IS - 12 ER -