TY - JOUR T1 - Knowledge of majority scientific agreement on anthropogenic climate change predicts perceived global risk better than perceived personal risk JF - Journal of Risk Research Y1 - 2022 A1 - Kohl, Patrice A1 - Wardropper, Chloe KW - anthropogenic climate change KW - comparative optimism KW - Knowledge KW - psychological distance KW - risk perception KW - scientific consensus AB - Studies examining climate change risk perceptions rarely differentiate between personal and general risk perceptions. Researchers could come to conflicting conclusions about what variables are important in predicting people's perceptions of risk if they do not differentiate between perceptions of personal and general risk. In this study, we used data from a survey of residents in a Midwestern region of the United States to examine the relationship between two measures of knowledge and perceptions of the risk of climate change at personal and the global (i.e. general) levels. Knowledge of the scientific consensus on anthropogenic climate change significantly predicted perceptions of both types of risks, but was more strongly related to greater risk perceptions at the global level. Knowledge of climate change's impact on regional flooding predicted greater climate change risk perception, and we did not find a difference in its association with risk perception at the global versus the personal level. Understanding how different types of knowledge influence people's perception of climate change risks can foster a better understanding of related decision-making processes and used to support more strategic public education and communication on climate change. UR - https://www.tandfonline.com/doi/citedby/10.1080/13669877.2022.2028883 ER - TY - JOUR T1 - Ecological worldview, agricultural or natural resource-based activities, and geography affect perceived importance of ecosystem services JF - Landscape and Urban Planning Y1 - 2020 A1 - Wardropper, C.B. A1 - Mase, A.S. A1 - Qiu, J. A1 - Kohl, P. A1 - Booth, E.G. A1 - Rissman, A.R. KW - agriculture KW - ecosystem services KW - New Ecological Paradigm KW - Urban KW - Water AB - Understanding public perceptions of the importance of ecosystem services (ES) is crucial for the development and communication of sustainable management and policies. Yet public perspectives on ES and their sociocultural and geographic patterns are not well understood. This study asks: Which ES are perceived as more or less important by the general public?; Which ES are considered most similar when the public are asked to evaluate the importance of specific water, agricultural and natural resources ES?; And, what individual and geographic factors are associated with perceived importance of different ES? We conducted a survey of residents in an urban and agricultural watershed in the U.S. Upper Midwest (n = 1136). This study asked respondents about a wider range of ES than is typical, and examines how ecological worldviews influence the perceived importance of ES. Respondents rated regional provision of drinking and surface water quality, clean lakes and rivers for wildlife, and a reliable supply of drinking and surface water most important. Those with a stronger ecological worldview tended to rate natural areas and processes as more important and agricultural products as less important than respondents with a more anthropocentric worldview. Perceived importance of various ES was also predicted by other individual-level factors relating to livelihood, outdoor recreation, and proximity to lakes, forests and agriculture. For example, respondents with livelihoods dependent on agriculture rated agricultural products and rural character highly. These findings bolster the case for more context-specific assessments of public importance ratings for environmental benefits to inform planning and management. VL - 197 SN - 0169-2046 UR - http://www.sciencedirect.com/science/article/pii/S0169204619305869 JO - Landscape and Urban Planning ER - TY - JOUR T1 - Comparing the effects of climate and land use on surface water quality using future watershed scenarios JF - Science of the Total Environment Y1 - 2019 A1 - Motew, Melissa A1 - Chen, Xi A1 - Carpenter, Stephen R. A1 - Booth, Eric G. A1 - Seifert, Jenny A1 - Qiu, Jiangxiao A1 - Loheide, Steven P. A1 - Turner, Monica G. A1 - Zipper, Samuel C. A1 - Kucharik, Christopher J. KW - climate KW - land use KW - Manure KW - phosphorus KW - Surface water quality KW - Watershed AB - Eutrophication of freshwaters occurs in watersheds with excessive pollution of phosphorus (P). Factors that affect P cycling and transport, including climate and land use, are changing rapidly and can have legacy effects, making future freshwater quality uncertain. Focusing on the Yahara Watershed (YW) of southern Wisconsin, USA, an intensive agricultural landscape, we explored the relative influence of land use and climate on three indicators of water quality over a span of 57 years (2014–2070). The indicators included watershed-averaged P yield from the land surface, direct drainage P loads to a lake, and average summertime lake P concentration. Using biophysical model simulations of future watershed scenarios, we found that climate exerted a stronger influence than land use on all three indicators, yet land use had an important role in influencing long term outcomes for each. Variations in P yield due to land use exceeded those due to climate in 36 of 57 years, whereas variations in load and lake total P concentration due to climate exceeded those due to land use in 54 of 57 years, and 52 of 57 years, respectively. The effect of land use was thus strongest for P yield off the landscape and attenuated in the stream and lake aquatic systems where the influence of weather variability was greater. Overall these findings underscore the dominant role of climate in driving inter-annual nutrient fluxes within the hydrologic network and suggest a challenge for land use to influence water quality within streams and lakes over timescales less than a decade. Over longer timescales, reducing applications of P throughout the watershed was an effective management strategy under all four climates investigated, even during decades with wetter conditions and more frequent extreme precipitation events. VL - 693 SN - 0048-9697 UR - http://www.sciencedirect.com/science/article/pii/S0048969719334047 ER - TY - JOUR T1 - Management of minimum lake levels and impacts on flood mitigation: A case study of the Yahara Watershed, Wisconsin, USA JF - Journal of Hydrology Y1 - 2019 A1 - Chen, Xi A1 - Motew, Melissa M. A1 - Booth, Eric G. A1 - Zipper, Samuel C. A1 - Loheide, Steven P. A1 - Kucharik, Christopher J. KW - ecosystem services KW - Flood exposure assessment KW - Hydrologic model KW - Lake level management AB - Lake level regulation is commonly used to manage water resources and mitigate flood risk in watersheds with linked river–lake systems. In this study, we first assess exposure, in terms of both population and land area, to flooding impacts in the Yahara Watershed’s chain of four lakes in southern Wisconsin as affected by minimum lake level management. A flooding exposure assessment shows that the areas surrounding the upstream lakes, Mendota and Monona, have dense urban areas with high populations that are exposed to flooding; Waubesa has low elevations along its lakeshore, resulting in a large potential flooding area; and the most downstream lake, Kegonsa, has a large area of surrounding cropland that is exposed to flooding but impacts a limited population. We then use a linked modeling framework of a land surface model (Agro-IBIS) and a hydrologic-routing model (THMB) to simulate daily lake level over a study period of 1994–2013 in the Yahara Watershed with different minimum lake level management strategies. Modeling results show that the peak lake levels and corresponding exposed land area and population to flooding will decrease under a lower target minimum lake level. However, at the same time, the number of days that the lake level is below winter minimum will increase, which may adversely affect ecosystem health. In addition, our sensitivity analysis indicates that reducing target minimum lake levels will help mitigate flood risk in terms of both flood magnitude and frequency. Nevertheless, this must be balanced against the need to maintain adequately high lake levels for ecosystem services and recreational functions of the lakes. VL - 577 SN - 0022-1694 UR - http://www.sciencedirect.com/science/article/pii/S0022169419306407 JO - Journal of Hydrology ER - TY - JOUR T1 - Nonlinear groundwater influence on biophysical indicators of ecosystem services JF - Nature Sustainability Y1 - 2019 A1 - Qiu, Jiangxiao A1 - Zipper, Samuel C. A1 - Motew, Melissa A1 - Booth, Eric G. A1 - Kucharik, Christopher J. A1 - Loheide, Steven P. AB - Groundwater is a fundamental control on biophysical processes underpinning essential ecosystem services (ES). However, interactions and feedbacks among groundwater, climate and multiple ES remain less well understood. We investigated groundwater effects on a portfolio of food, water and biogeochemical ES indicators in an urbanizing agricultural watershed. Our results show that food production, water quality and quantity, and flood control are most sensitive to groundwater, with the strongest responses under wet and dry climate extremes. Climate mediates groundwater effects, such that several ES have synergies during dry climate, but trade-offs (groundwater increased some ES but declined others) under wet climate. There is substantial spatial heterogeneity in groundwater effects on ES, which is driven primarily by water table depth (WTD) and is also sensitive to soil texture and land cover. Most ES indicators respond nonlinearly to WTD when groundwater is within a critical depth (approximately 2.5 m) of land surface, indicating that small WTD changes can have disproportionately large effects on ES in shallow groundwater areas. Within this critical WTD, increasingly shallow groundwater leads to nonlinear increases in surface flood risk, sediment erosion and phosphorus yield; nonlinear decreases in drainage to the deep vadose zone and thus groundwater recharge; and bidirectional responses of crop and grass production, carbon storage and nitrate leaching. Our study illustrates the complex role of groundwater in affecting multiple ES and highlights that strategically managing groundwater may enhance ES resilience to climate extremes in shallow groundwater settings. SN - 2398-9629 UR - https://doi.org/10.1038/s41893-019-0278-2 JO - Nature Sustainability ER - TY - JOUR T1 - Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer JF - Proceedings of the National Academy of Sciences Y1 - 2019 A1 - Ziter, Carly D. A1 - Pedersen, Eric J. A1 - Kucharik, Christopher J. A1 - Turner, Monica G. KW - air temperature KW - ecosystem services KW - landscape context KW - urban forest KW - urban heat island AB - Cities worldwide are experiencing record-breaking summer air temperatures, with serious consequences for people. Increased tree cover is suggested as a climate adaptation strategy, but the amount of tree canopy cover needed to counteract higher temperatures associated with impervious surface cover is not known. We used a bicycle-mounted measurement system to quantify the interaction of canopy cover and impervious surface cover on urban air temperature. Daytime air temperature was substantially reduced with greater canopy cover (≥40%) at the scale of a typical city block (60–90 m), especially on the hottest days. However, reducing impervious surfaces remained important for lowering nighttime temperatures. Results can guide strategies for increasing tree cover to mitigate daytime urban heat and improve residents’ well-being.As cities warm and the need for climate adaptation strategies increases, a more detailed understanding of the cooling effects of land cover across a continuum of spatial scales will be necessary to guide management decisions. We asked how tree canopy cover and impervious surface cover interact to influence daytime and nighttime summer air temperature, and how effects vary with the spatial scale at which land-cover data are analyzed (10-, 30-, 60-, and 90-m radii). A bicycle-mounted measurement system was used to sample air temperature every 5 m along 10 transects (∼7 km length, sampled 3–12 times each) spanning a range of impervious and tree canopy cover (0–100%, each) in a midsized city in the Upper Midwest United States. Variability in daytime air temperature within the urban landscape averaged 3.5 °C (range, 1.1–5.7 °C). Temperature decreased nonlinearly with increasing canopy cover, with the greatest cooling when canopy cover exceeded 40%. The magnitude of daytime cooling also increased with spatial scale and was greatest at the size of a typical city block (60–90 m). Daytime air temperature increased linearly with increasing impervious cover, but the magnitude of warming was less than the cooling associated with increased canopy cover. Variation in nighttime air temperature averaged 2.1 °C (range, 1.2–3.0 °C), and temperature increased with impervious surface. Effects of canopy were limited at night; thus, reduction of impervious surfaces remains critical for reducing nighttime urban heat. Results suggest strategies for managing urban land-cover patterns to enhance resilience of cities to climate warming. UR - http://www.pnas.org/content/early/2019/03/19/1817561116.abstract JO - Proc Natl Acad Sci USA ER - TY - JOUR T1 - Continuous separation of land use and climate effects on the past and future water balance JF - Journal of Hydrology Y1 - 2018 A1 - Zipper, Samuel C. A1 - Motew, Melissa A1 - Booth, Eric G. A1 - Chen, Xi A1 - Qiu, Jiangxiao A1 - Kucharik, Christopher J. A1 - Carpenter, Stephen R. A1 - Loheide II, Steven P. KW - Baseflow KW - Climate change KW - Evapotranspiration KW - Land use change KW - Streamflow KW - Urbanization AB - Understanding the combined and separate effects of climate and land use change on the water cycle is necessary to mitigate negative impacts. However, existing methodologies typically divide data into discrete (before and after) periods, implicitly representing climate and land use as step changes when in reality these changes are often gradual. Here, we introduce a new regression-based methodological framework designed to separate climate and land use effects on any hydrological flux of interest continuously through time, and estimate uncertainty in the contribution of these two drivers. We present two applications in the Yahara River Watershed (Wisconsin, USA) demonstrating how our approach can be used to understand synergistic or antagonistic relationships between land use and climate in either the past or the future: (1) historical streamflow, baseflow, and quickflow in an urbanizing subwatershed; and (2) simulated future evapotranspiration, drainage, and direct runoff from a suite of contrasting climate and land use scenarios for the entire watershed. In the historical analysis, we show that ∼60% of recent streamflow changes can be attributed to climate, with approximately equal contributions from quickflow and baseflow. However, our continuous method reveals that baseflow is significantly increasing through time, primarily due to land use change and potentially influenced by long-term increases in groundwater storage. In the simulation of future changes, we show that all components of the future water balance will respond more strongly to changes in climate than land use, with the largest potential land use effects on drainage. These results indicate that diverse land use change trajectories may counteract each other while the effects of climate are more homogeneous at watershed scales. Therefore, management opportunities to counteract climate change effects will likely be more effective at smaller spatial scales, where land use trajectories are unidirectional. VL - 565 UR - http://www.sciencedirect.com/science/article/pii/S0022169418306188 ER - TY - JOUR T1 - The synergistic effect of manure supply and extreme precipitation on surface water quality JF - Environmental Research Letters Y1 - 2018 A1 - Melissa Motew A1 - Eric G. Booth A1 - Stephen R. Carpenter A1 - Xi Chen A1 - Christopher J. Kucharik AB - Over-enrichment of phosphorus (P) in agroecosystems contributes to eutrophication of surface waters. In the Midwest U.S. and elsewhere, climate change is increasing the frequency of high-intensity precipitation events, which can serve as a primary conduit of P transport. Despite uncertainty in their estimates, process-based watershed models are important tools that help characterize watershed hydrology and biogeochemistry and scale up important mechanisms affecting water quality. Using one such model developed for an agricultural watershed in Wisconsin, we conducted a 2x2 factorial experiment to test the effects of (high/low) terrestrial P supply (PSUP) and (high/low) precipitation intensity (PREC) on surface water quality. Sixty-year simulations were conducted for each of the four runs, with annual results obtained for watershed average P yield and concentration at the field scale (220m x 220m grid cells), P load and concentration at the stream scale, and summertime total P concentration (TP) in Lake Mendota. ANOVA results were generated for the 2x2 factorial design, with PSUP and PREC treated as categorical variables. The results showed a significant, positive interaction (p<0.01) between the two drivers for dissolved P concentration at the field and stream scales, and total P concentration at the field, stream, and lake scales. The synergy in dissolved P was linked to nonlinear dependencies between P stored in manure and the daily runoff to rainfall ratio. The synergistic response of dissolved P loss may have important ecological consequences because dissolved P is highly bioavailable. Overall, the results suggest that high levels of terrestrial P supplied as manure can exacerbate water quality problems in the future as the frequency of high-intensity rainfall events increases with a changing climate. Conversely, lowering terrestrial manure P supply may help improve the resilience of surface water quality to extreme events. SN - 1748-9326 UR - http://iopscience.iop.org/10.1088/1748-9326/aaade6 ER - TY - JOUR T1 - Effects of Root Distribution and Root Water Compensation on Simulated Water Use in Maize Influenced by Shallow Groundwater JF - Vadose Zone Journal Y1 - 2017 A1 - Soylu, Mehmet Evren A1 - Loheide, Steven P. A1 - Kucharik, Christopher J. AB - We investigated the potential impacts of shallow groundwater, root length density (RLD) distribution, and root water compensation on transpiration and net primary productivity (NPP). An agroecosystem model (AgroIBIS-VSF) that is capable of simulating variably saturated water flow was driven with hourly weather observations in southern Wisconsin over 27 yr for various RLD distributions across a continuum of groundwater depth. The results indicated that the strength of the relationship between groundwater depth and water use in the critical water table depth zone is controlled by the root structure and root water uptake (RWU) strategy. In this zone, transpiration is progressively more sensitive to the groundwater level as roots become shallower. The impact of drought on corn (Zea mays L.) lessens and corn becomes less reliant on compensated RWU capabilities as roots extend deeper. Simulations indicated that the use of the compensated RWU approach results in NPP increases of 38.1 (3.81%), 30.8 (2.74%), and 6.4 (0.55%) g C m-2 yr-1 during the driest years (i.e., when growing season precipitation is below the 30th percentile of the long-term observations) for shallow, intermediate, and deep RLDs, respectively. Moreover, shallow groundwater supported RWU, and corn with a shallow RLD benefited the most from shallow groundwater, with an increase in annual transpiration of 230 mm. Our findings underscore the importance of incorporating compensatory RWU and selecting an appropriate and representative RLD for contrasting vegetation types in ecosystem models to simulate a more realistic plant response to variable climate and groundwater depth conditions. VL - 16 UR - http://dx.doi.org/10.2136/vzj2017.06.0118 ER - TY - JOUR T1 - Extreme precipitation and phosphorus loads from two agricultural watersheds JF - Limnology and Oceanography Y1 - 2017 A1 - Carpenter, Stephen R. A1 - Booth, Eric G. A1 - Kucharik, Christopher J. AB - Phosphorus runoff from agricultural land is a major cause of eutrophication in lakes and reservoirs. Frequency and intensity of extreme precipitation events are increasing in agricultural regions of the Upper Midwestern U.S., and these increases are projected to continue as climate warms. We quantified the linkage between extreme daily precipitation and extreme daily discharge, phosphorus (P) load, and P concentration for Pheasant Branch and the Yahara River, two tributaries of Lake Mendota, Wisconsin, U.S.A. using the generalized Pareto distribution. Although precipitation extremes have increased since 1940, over the shorter period of stream monitoring (1994–2015 for Pheasant Branch and 1991–2015 for Yahara) there is no significant trend in extreme precipitation. Nonetheless a disproportionate number of extreme precipitation events (for example seven of the 11 largest 24-h events since 1901) occurred during the period of stream monitoring. Daily precipitation extremes were associated with extremes in daily discharge and P load. P load return levels increased steeply and almost linearly with precipitation on log-log axes. The trend toward more frequent and intense precipitation extremes will increase P loading and intensify the eutrophication of the lake, unless the excessive P enrichment of the watershed is reversed. SN - 1939-5590 UR - http://dx.doi.org/10.1002/lno.10767 ER - TY - JOUR T1 - Flashiness and Flooding of Two Lakes in the Upper Midwest During a Century of Urbanization and Climate Change JF - Ecosystems Y1 - 2017 A1 - Usinowicz, Jacob A1 - Qiu, Jiangxiao A1 - Kamarainen, Amy AB - Globally, ecosystem services are threatened by increasing urbanization and more variable precipitation patterns driven by climate change. However, how these drivers interact over long-time scales to affect underlying processes remains poorly understood, hindering our ability to predict their long-term consequences. Here, we use long-term data spanning nearly a century to investigate changes in hydrologic attributes for two lakes in the Upper Midwest with urbanizing watersheds. We quantified flashiness—the variability of runoff rate, volume, or stage-level of waterways—to investigate the concurrent impacts of urbanization and climate change on flashiness and flooding potential. Our results indicate that flashiness generally increased for both lakes over the period of 1916–2013, although this overall trend consists of sub-periods of increase and decrease. Increasing impervious surface area has been the stronger driver of flashiness historically; however, our results suggest that the impact of urbanization may reach a threshold, such that saturation effects would cause large magnitude precipitation events to become a relatively stronger driver of flashiness. Increasing flashiness indicates an increase in flooding potential, documented by increases in the 10- and 100-year flood threshold levels as large as 30 cm. Since flashiness is strongly related to the provisioning of multiple ecosystem services, the methodology and results presented here provide a unique approach to gain insight into how non-linear interactions between global change drivers, at multiple time scales, impact the simultaneous provision of multiple services. VL - 20 SN - 1435-0629 UR - http://dx.doi.org/10.1007/s10021-016-0042-7 IS - 3 JO - Ecosystems ER - TY - JOUR T1 - The Influence of Legacy P on Lake Water Quality in a Midwestern Agricultural Watershed JF - Ecosystems Y1 - 2017 A1 - Motew, Melissa A1 - Chen, Xi A1 - Booth, Eric G. A1 - Carpenter, Stephen R. A1 - Pinkas, Pavel A1 - Zipper, Samuel C. A1 - Loheide, Steven P. A1 - Donner, Simon D. A1 - Tsuruta, Kai A1 - Vadas, Peter A. A1 - Kucharik, Christopher J. AB - Decades of fertilizer and manure applications have led to a buildup of phosphorus (P) in agricultural soils and sediments, commonly referred to as legacy P. Legacy P can provide a long-term source of P to surface waters where it causes eutrophication. Using a suite of numerical models, we investigated the influence of legacy P on water quality in the Yahara Watershed of southern Wisconsin, USA. The suite included Agro-IBIS, a terrestrial ecosystem model; THMB, a hydrologic and nutrient routing model; and the Yahara Water Quality Model which estimates water quality indicators in the Yahara chain of lakes. Using five alternative scenarios of antecedent P storage (legacy P) in soils and channels under historical climate conditions, we simulated outcomes of P yield from the landscape, lake P loading, and three lake water quality indicators. Legacy P had a significant effect on lake loads and water quality. Across the five scenarios for Lake Mendota, the largest and most upstream lake, average P yield (kg ha−1) varied by −41 to +22%, P load (kg y−1) by −35 to +14%, summer total P (TP) concentration (mg l−1) by −25 to +12%, Secchi depth (m) by −7 to +3%, and the probability of hypereutrophy by −67 to +34%, relative to baseline conditions. The minimum storage scenario showed that a 35% reduction in present-day loads to Lake Mendota corresponded with a 25% reduction in summer TP and smaller reductions in the downstream lakes. Water quality was more vulnerable to heavy rainfall events at higher amounts of P storage and less so at lower amounts. Increases in heavy precipitation are expected with climate change; therefore, water quality could be protected by decreasing P reserves. SN - 1435-0629 UR - http://dx.doi.org/10.1007/s10021-017-0125-0 JO - Ecosystems ER - TY - JOUR T1 - Public support for carrot, stick, and no-government water quality policies JF - Environmental Science & Policy Y1 - 2017 A1 - Rissman, Adena R. A1 - Kohl, Patrice A. A1 - Wardropper, Chloe B. KW - Cultural cognition KW - Environmental policy KW - Nonpoint source pollution KW - Policy support KW - Public preferences KW - Water quality policy AB - Public support for environmental policy provides an important foundation for democratic governance. Numerous policy innovations may improve nonpoint source pollution, but little research has examined which types of individuals are likely to support various runoff reduction policies. We conducted a household mail survey of 1136 residents in southern Wisconsin. In general, residents were more likely to support water quality policies if they were communitarians, egalitarians, concerned about water pollution, and perceived water quality as poor. The majority of respondents somewhat to strongly supported all of the seven proposed water quality policies, but opposed relying on voluntary action without government involvement on farms. Residents had higher support for incentives and market-based approaches (carrot policies) than regulation and taxes (stick policies). A more complicated pattern emerged in within-subject comparisons of residents’ views of carrot and stick approaches. Stick approaches polarized respondents by decreasing support among people with individualistic worldviews, while slightly increasing support among people with communitarian worldviews. Residents with an agricultural occupation were more likely to support voluntary, non-governmental approaches for reducing agricultural runoff, and were also more likely to support regulation for reducing urban lawn runoff. This research highlights the dominant role of cultural worldviews and the secondary roles of water pollution concern, perceived water quality, and self-interest in explaining support for diverse policies to reduce nonpoint source pollution. VL - 76 SN - 1462-9011 UR - http://www.sciencedirect.com/science/article/pii/S1462901116307407 JO - Environmental Science & Policy ER - TY - JOUR T1 - Quantifying indirect groundwater-mediated effects of urbanization on agroecosystem productivity using MODFLOW-AgroIBIS (MAGI), a complete critical zone model JF - Ecological Modeling Y1 - 2017 A1 - Zipper, Samuel C. A1 - Soylu, Mehmet Evren A1 - Kucharik, Christopher J. A1 - Loheide II, Steven P. KW - agroecosystem modeling KW - Dynamic vegetation models KW - Groundwater recharge KW - Groundwater-land surface coupling KW - Land use change KW - Urbanization AB - Sustainably accommodating future population growth and meeting global food requirements requires understanding feedbacks between ecosystems and belowground hydrological processes. Here, we introduce MODFLOW-AgroIBIS (MAGI), a new dynamic ecosystem model including groundwater flow, and use MAGI to explore the indirect impacts of land use change (urbanization) on landscape-scale agroecosystem productivity (corn yield). We quantify the degree to which urbanization can indirectly impact yield in surrounding areas by changing the amount of groundwater recharge locally and the water table dynamics at landscape scales. We find that urbanization can cause increases or decreases in yield elsewhere, with changes up to approximately +/− 40% under the conditions simulated due entirely to altered groundwater-land surface interactions. Our results indicate that land use change in upland areas has the largest impact on water table depth over the landscape. However, there is a spatial mismatch between areas with the largest water table response to urbanization elsewhere (upland areas) and locations with the strongest yield response to urbanization elsewhere (midslope areas). This mismatch arises from differences in baseline water table depth prior to urbanization. Yield response to urbanization in lowland areas is relatively localized despite large changes to the vertical water balance due to stabilizing ecohydrological feedbacks between root water uptake and lateral groundwater flow. These results demonstrate that hydrological impacts of land use change can propagate through subsurface flow to indirectly impact surrounding ecosystems, and these subsurface connections should be considered when planning land use at a landscape scale to avoid negative outcomes associated with land use change. VL - 359 SN - 0304-3800 UR - http://www.sciencedirect.com/science/article/pii/S0304380017300789 JO - Ecological Modelling ER - TY - JOUR T1 - Urban heat island-induced increases in evapotranspirative demand JF - Geophysical Research Letters Y1 - 2017 A1 - Zipper, Samuel C. A1 - Schatz, Jason A1 - Kucharik, Christopher J. A1 - Loheide, Steven P. KW - ecohydrology KW - plant water use KW - reference evapotranspiration KW - urban climatology KW - urban ecology KW - urban heat island KW - Urban systems KW - Water supply AB - Although the importance of vegetation in mitigating the urban heat island (UHI) is known, the impacts of UHI-induced changes in micrometeorological conditions on vegetation are not well understood. Here we show that plant water requirements are significantly higher in urban areas compared to rural areas surrounding Madison, WI, driven by increased air temperature with minimal effects of decreased air moisture content. Local increases in impervious cover are strongly associated with increased evapotranspirative demand in a consistent manner across years, with most increases caused by elevated temperatures during the growing season rather than changes in changes in growing season length. Potential evapotranspiration is up to 10% higher due to the UHI, potentially mitigating changes to the water and energy balances caused by urbanization. Our results indicate that local-scale land cover decisions (increases in impervious cover) can significantly impact evapotranspirative demand, with likely implications for water and carbon cycling in urban ecosystems. SN - 1944-8007 UR - http://dx.doi.org/10.1002/2016GL072190 ER - TY - JOUR T1 - Biodiversity and ecosystem services require IPBES to take novel approach to scenarios JF - Sustainability Science Y1 - 2016 A1 - Kok, Marcel T. J. A1 - Kok, Kasper A1 - Peterson, Garry D. A1 - Hill, Rosemary A1 - Agard, John A1 - Carpenter, Stephen R. AB - What does the future hold for the world’s ecosystems and benefits that people obtain from them? While the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) has identified the development of scenarios as a key to helping decision makers identify potential impacts of different policy options, it currently lacks a long-term scenario strategy. IPBES will decide how it will approach scenarios at its plenary meeting on 22–28 February 2016, in Kuala Lumpur. IPBES now needs to decide whether it should create new scenarios that better explore ecosystem services and biodiversity dynamics. For IPBES to capture the social-ecological dynamics of biodiversity and ecosystem services, it is essential to engage with the great diversity of local contexts, while also including the global tele-coupling among local places. We present and compare three alternative scenario strategies that IPBES could use and then suggest a bottom-up, cross-scale scenario strategy to improve the policy relevance of future IPBES assessments. We propose five concrete steps as part of an effective, long term scenario development process for IPBES in cooperation with the scientific community. SN - 1862-4057 UR - http://dx.doi.org/10.1007/s11625-016-0354-8 JO - Sustainability Science ER - TY - JOUR T1 - Drought effects on US maize and soybean production: spatiotemporal patterns and historical changes JF - Environmental Research Letters Y1 - 2016 A1 - Samuel C Zipper A1 - Jiangxiao Qiu A1 - Christopher J Kucharik KW - agriculture KW - Climate change KW - drought KW - food production KW - SPEI KW - yield variability AB - Maximizing agricultural production on existing cropland is one pillar of meeting future global foodsecurity needs. To close crop yield gaps, it is critical to understand how climate extremes such asdrought impact yield. Here, we use gridded, daily meteorological data and county-level annual yielddata to quantify meteorological drought sensitivity of US maize and soybean production from 1958 to2007. Meteorological drought negatively affects crop yield over most US crop-producing areas, andyield is most sensitive to short-term (1–3 month) droughts during critical development periods fromJuly to August. While meteorological drought is associated with 13% of overall yield variability,substantial spatial variability in drought effects and sensitivity exists, with central andsoutheastern US becoming increasingly sensitive to drought over time. Our study illustratesfine-scale spatiotemporal patterns of drought effects, highlighting where variability in cropproduction is most strongly associated with drought, and suggests that management strategies thatbuffer against short-term water stress may be most effective at sustaining long-term cropproductivity. VL - 11 SN - 1748-9326 UR - http://stacks.iop.org/1748-9326/11/i=9/a=094021 IS - 9 ER - TY - JOUR T1 - From qualitative to quantitative environmental scenarios: Translating storylines into biophysical modeling inputs at the watershed scale JF - Environmental Modelling & Software Y1 - 2016 A1 - Booth, Eric G. A1 - Qiu, Jiangxiao A1 - Carpenter, Stephen R. A1 - Schatz, Jason A1 - Chen, Xi A1 - Kucharik, Christopher J. A1 - Loheide II, Steven P. A1 - Motew, Melissa M. A1 - Seifert, Jenny M. A1 - Turner, Monica G. KW - Biophysical modeling KW - Climate change KW - Land use change KW - scenarios KW - Social-ecological systems KW - Watershed AB - Scenarios are increasingly used for envisioning future social-ecological changes and consequences for human well-being. One approach integrates qualitative storylines and biophysical models to explore potential futures quantitatively and maximize public engagement. However, this integration process is challenging and sometimes oversimplified. Using the Yahara Watershed (Wisconsin, USA) as a case study, we present a transparent and reproducible roadmap to develop spatiotemporally explicit biophysical inputs [climate, land use/cover (LULC), and nutrients] that are consistent with scenario narratives and can be linked to a process-based biophysical modeling suite to simulate long-term dynamics of a watershed and a range of ecosystem services. Our transferrable approach produces daily weather inputs by combining climate model projections and a stochastic weather generator, annual narrative-based watershed-scale LULC distributed spatially using transition rules, and annual manure and fertilizer (nitrogen and phosphorus) inputs based on current farm and livestock data that are consistent with each scenario narrative. VL - 85 SN - 1364-8152 UR - http://www.sciencedirect.com/science/article/pii/S1364815216304935 JO - Environmental Modelling & Software ER - TY - JOUR T1 - Is groundwater recharge always serving us well? Water supply provisioning, crop production, and flood attenuation in conflict in Wisconsin, USA JF - Ecosystem Services Y1 - 2016 A1 - Booth, Eric G. A1 - Zipper, Samuel C. A1 - Loheide II, Steven P. A1 - Kucharik, Christopher J. KW - Crop production KW - Flooding KW - Groundwater KW - Hydrologic services KW - Recharge KW - Water supply AB - Ecosystem service mapping can provide an avenue for making effective land management decisions in a holistic way. However, mapped quantities do not always appropriately represent the ecosystem services that are used by humans. We highlight this issue with a case study of groundwater recharge, water supply, flooding, and agricultural production in an urbanizing agricultural watershed in southern Wisconsin, USA. Groundwater recharge is typically treated as a beneficial ecosystem service or service indicator whose value to humans monotonically increases with the amount of recharge. While appropriate from a water supply perspective, this relationship breaks down when excess groundwater recharge leads to flooding and crop damage. We suggest moving beyond groundwater recharge as a stand-alone ecosystem service, and instead propose that observations and biophysical models should be used to quantify the final service humans receive from groundwater (e.g. reliability of water supply from a municipal well). Integration of such derived, point-based metrics with other ecosystem services that are more easily represented at the landscape scale remains a challenge for regional ecosystem service inventories and analyses. VL - 21, Part A SN - 2212-0416 UR - http://www.sciencedirect.com/science/article/pii/S2212041616302315 JO - Ecosystem Services ER - TY - JOUR T1 - Nitrogen Fertilization Effects on Productivity and Nitrogen Loss in Three Grass-Based Perennial Bioenergy Cropping Systems JF - PLoS ONE Y1 - 2016 A1 - Duran, Brianna E. L. A1 - Duncan, David S. A1 - Oates, Lawrence G. A1 - Kucharik, Christopher J. A1 - Jackson, Randall D. AB -
Nitrogen (N) fertilization can greatly improve plant productivity but needs to be carefully managed to avoid harmful environmental impacts. Nutrient management guidelines aimed at reducing harmful forms of N loss such as nitrous oxide (N2O) emissions and nitrate (NO3-) leaching have been tailored for many cropping systems. The developing bioenergy industry is likely to make use of novel cropping systems, such as polycultures of perennial species, for which we have limited nutrient management experience. We studied how a switchgrass (