TY - JOUR T1 - Continuous separation of land use and climate effects on the past and future water balance JF - Journal of Hydrology Y1 - 2018 A1 - Zipper, Samuel C. A1 - Motew, Melissa A1 - Booth, Eric G. A1 - Chen, Xi A1 - Qiu, Jiangxiao A1 - Kucharik, Christopher J. A1 - Carpenter, Stephen R. A1 - Loheide II, Steven P. KW - Baseflow KW - Climate change KW - Evapotranspiration KW - Land use change KW - Streamflow KW - Urbanization AB - Understanding the combined and separate effects of climate and land use change on the water cycle is necessary to mitigate negative impacts. However, existing methodologies typically divide data into discrete (before and after) periods, implicitly representing climate and land use as step changes when in reality these changes are often gradual. Here, we introduce a new regression-based methodological framework designed to separate climate and land use effects on any hydrological flux of interest continuously through time, and estimate uncertainty in the contribution of these two drivers. We present two applications in the Yahara River Watershed (Wisconsin, USA) demonstrating how our approach can be used to understand synergistic or antagonistic relationships between land use and climate in either the past or the future: (1) historical streamflow, baseflow, and quickflow in an urbanizing subwatershed; and (2) simulated future evapotranspiration, drainage, and direct runoff from a suite of contrasting climate and land use scenarios for the entire watershed. In the historical analysis, we show that ∼60% of recent streamflow changes can be attributed to climate, with approximately equal contributions from quickflow and baseflow. However, our continuous method reveals that baseflow is significantly increasing through time, primarily due to land use change and potentially influenced by long-term increases in groundwater storage. In the simulation of future changes, we show that all components of the future water balance will respond more strongly to changes in climate than land use, with the largest potential land use effects on drainage. These results indicate that diverse land use change trajectories may counteract each other while the effects of climate are more homogeneous at watershed scales. Therefore, management opportunities to counteract climate change effects will likely be more effective at smaller spatial scales, where land use trajectories are unidirectional. VL - 565 UR - http://www.sciencedirect.com/science/article/pii/S0022169418306188 ER - TY - JOUR T1 - Drought effects on US maize and soybean production: spatiotemporal patterns and historical changes JF - Environmental Research Letters Y1 - 2016 A1 - Samuel C Zipper A1 - Jiangxiao Qiu A1 - Christopher J Kucharik KW - agriculture KW - Climate change KW - drought KW - food production KW - SPEI KW - yield variability AB - Maximizing agricultural production on existing cropland is one pillar of meeting future global foodsecurity needs. To close crop yield gaps, it is critical to understand how climate extremes such asdrought impact yield. Here, we use gridded, daily meteorological data and county-level annual yielddata to quantify meteorological drought sensitivity of US maize and soybean production from 1958 to2007. Meteorological drought negatively affects crop yield over most US crop-producing areas, andyield is most sensitive to short-term (1–3 month) droughts during critical development periods fromJuly to August. While meteorological drought is associated with 13% of overall yield variability,substantial spatial variability in drought effects and sensitivity exists, with central andsoutheastern US becoming increasingly sensitive to drought over time. Our study illustratesfine-scale spatiotemporal patterns of drought effects, highlighting where variability in cropproduction is most strongly associated with drought, and suggests that management strategies thatbuffer against short-term water stress may be most effective at sustaining long-term cropproductivity. VL - 11 SN - 1748-9326 UR - http://stacks.iop.org/1748-9326/11/i=9/a=094021 IS - 9 ER - TY - JOUR T1 - From qualitative to quantitative environmental scenarios: Translating storylines into biophysical modeling inputs at the watershed scale JF - Environmental Modelling & Software Y1 - 2016 A1 - Booth, Eric G. A1 - Qiu, Jiangxiao A1 - Carpenter, Stephen R. A1 - Schatz, Jason A1 - Chen, Xi A1 - Kucharik, Christopher J. A1 - Loheide II, Steven P. A1 - Motew, Melissa M. A1 - Seifert, Jenny M. A1 - Turner, Monica G. KW - Biophysical modeling KW - Climate change KW - Land use change KW - scenarios KW - Social-ecological systems KW - Watershed AB - Scenarios are increasingly used for envisioning future social-ecological changes and consequences for human well-being. One approach integrates qualitative storylines and biophysical models to explore potential futures quantitatively and maximize public engagement. However, this integration process is challenging and sometimes oversimplified. Using the Yahara Watershed (Wisconsin, USA) as a case study, we present a transparent and reproducible roadmap to develop spatiotemporally explicit biophysical inputs [climate, land use/cover (LULC), and nutrients] that are consistent with scenario narratives and can be linked to a process-based biophysical modeling suite to simulate long-term dynamics of a watershed and a range of ecosystem services. Our transferrable approach produces daily weather inputs by combining climate model projections and a stochastic weather generator, annual narrative-based watershed-scale LULC distributed spatially using transition rules, and annual manure and fertilizer (nitrogen and phosphorus) inputs based on current farm and livestock data that are consistent with each scenario narrative. VL - 85 SN - 1364-8152 UR - http://www.sciencedirect.com/science/article/pii/S1364815216304935 JO - Environmental Modelling & Software ER - TY - JOUR T1 - Shifting drivers and static baselines in environmental governance: challenges for improving and proving water quality outcomes JF - Regional Environmental Change Y1 - 2016 A1 - Gillon, Sean A1 - Booth, Eric G. A1 - Rissman, Adena R. KW - Agricultural intensification KW - Climate change KW - Environmental governance KW - Land use change KW - Shifting drivers KW - Water quality AB - Understanding the conditions that enable or constrain success in environmental governance is crucial for developing effective interventions and adapting approaches. Efforts to achieve and assess success in environmental quality improvement are often impeded by changes in conditions that drive outcomes but lie outside the scope of intervention and monitoring. We document how long-term changes in land use, agriculture, and climate act as non-stationary, shifting drivers of change that combine to render water quality management interventions less effective and increasingly difficult to assess. Focusing on the Yahara River watershed of south-central Wisconsin, USA, we ask how baselines influence program modeling, monitoring, and evaluation, as well as adaptation in governance approach. Through historical trend, GIS, and policy and qualitative data analyses, we find that changes in long-term land use and precipitation pattern dynamics exert tremendous pressure on water quality outcomes but are not captured in snapshot baseline assessments used in management planning or evaluation. Specifically, agricultural sector change related to the intensification of milk and manure production is increasingly challenging to address through best management practices, and flashier precipitation associated with climate change makes it difficult to achieve goals and establish a causal connection between management interventions and outcomes. Analysis of shifting drivers demonstrates challenges facing environmental governance in the context of climatic and social–ecological change. We suggest that goal setting, program design, and evaluation incorporate new modes of analysis that address slowly changing and external determinants of success. VL - 16 SN - 1436-3798 UR - http://dx.doi.org/10.1007/s10113-015-0787-0 IS - 3 JO - Reg Environ Change ER -