TY - JOUR T1 - Biodiversity and ecosystem services require IPBES to take novel approach to scenarios JF - Sustainability Science Y1 - 2016 A1 - Kok, Marcel T. J. A1 - Kok, Kasper A1 - Peterson, Garry D. A1 - Hill, Rosemary A1 - Agard, John A1 - Carpenter, Stephen R. AB - What does the future hold for the world’s ecosystems and benefits that people obtain from them? While the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) has identified the development of scenarios as a key to helping decision makers identify potential impacts of different policy options, it currently lacks a long-term scenario strategy. IPBES will decide how it will approach scenarios at its plenary meeting on 22–28 February 2016, in Kuala Lumpur. IPBES now needs to decide whether it should create new scenarios that better explore ecosystem services and biodiversity dynamics. For IPBES to capture the social-ecological dynamics of biodiversity and ecosystem services, it is essential to engage with the great diversity of local contexts, while also including the global tele-coupling among local places. We present and compare three alternative scenario strategies that IPBES could use and then suggest a bottom-up, cross-scale scenario strategy to improve the policy relevance of future IPBES assessments. We propose five concrete steps as part of an effective, long term scenario development process for IPBES in cooperation with the scientific community. SN - 1862-4057 UR - http://dx.doi.org/10.1007/s11625-016-0354-8 JO - Sustainability Science ER - TY - JOUR T1 - General Resilience to Cope with Extreme Events JF - Sustainability Y1 - 2012 A1 - Carpenter, S. R. A1 - Arrow, K. J. A1 - Barrett, S. A1 - Biggs, R. A1 - Brock, W. A. A1 - Crepin, A. S. A1 - Engstrom, G. A1 - Folke, C. A1 - Hughes, T. P. A1 - Kautsky, N. A1 - Li, C. Z. A1 - McCarney, G. A1 - Meng, K. A1 - Maler, K. G. A1 - Polasky, S. A1 - Scheffer, M. A1 - Shogren, J. A1 - Sterner, T. A1 - Vincent, J. R. A1 - Walker, B. A1 - Xepapadeas, A. A1 - de Zeeuw, A. AB - Resilience to specified kinds of disasters is an active area of research and practice. However, rare or unprecedented disturbances that are unusually intense or extensive require a more broad-spectrum type of resilience. General resilience is the capacity of social-ecological systems to adapt or transform in response to unfamiliar, unexpected and extreme shocks. Conditions that enable general resilience include diversity, modularity, openness, reserves, feedbacks, nestedness, monitoring, leadership, and trust. Processes for building general resilience are an emerging and crucially important area of research. VL - 4 SN - 2071-1050 UR - http://dx.doi.org/10.3390/su4123248 IS - 12 ER -